NSF Award Abstract:
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).
Iron is one of the most abundant elements in the Earth’s crust, but it is extremely diluted in the ocean. Iron-poor surface waters limit the growth of microscopic marine life, called phytoplankton, and their ability to remove carbon from the atmosphere and surface ocean. However, over the last few decades, our understanding of how iron enters the ocean has evolved. Recent data has shown that deep-sea hot springs, also known as hydrothermal vents, impact global iron budgets and are important for surface iron supply. Hydrothermal vents are found globally along volcanic spreading centers where new seafloor is created through tectonic activity. The new porous seafloor allows seawater to circulate through the hot, chemically reactive rocks to create hydrothermal fluids. These fluids are less dense (hotter, 300-400°C) than deep ocean waters (2°C), so the water exiting the vents rises while mixing with ambient seawater, eventually forming hydrothermal plumes. These nutrient-rich plumes can extend for 10-1000s of kilometers into the ocean interior. To account for the long-range transport of hydrothermal iron into the ocean interior, models have shown that stabilizing agents (i.e. organic ligands) are needed to prevent iron from precipitating and settling to the seafloor. However, we still do not know the sources and identities of these organic ligands, as well as how common they are in various hydrothermal systems across the global ocean. Investigating these mechanism(s) for hydrothermal iron stabilization across different vent systems will provide insight into both local and long-range iron utilization by deep-sea marine microorganisms and phytoplankton in the surface ocean.
In this project, the sources, concentration, and identities of iron-binding organic ligands in hydrothermal plumes from four different volcanic spreading centers will be examined to understand their impact on iron stabilization and transport into the ocean interior. The major aim of this research is to test whether (1) the concentrations of strong organic ligands tightly control the distal transport of hydrothermally derived dissolved iron in neutrally buoyant plumes across a variety of hydrothermal vent systems and (2) investigate if microbes from hydrothermal systems are responsible for production of these strong organic ligands (i.e. siderophores). This work will use a combination of existing samples and samples of opportunity that will be collected during an upcoming field expedition, each from distinct spreading centers. These findings would significantly enhance our understanding of hydrothermal iron transport and aid in future modeling efforts on the fate of hydrothermal iron in the global iron cycle. This project will support the training of two early career scientists, an undergraduate intern, and STEM workshop kits for middle school programs about deep-sea environments, which will be developed in collaboration and made freely available through the NOAA Pacific Marine Environmental Education and Outreach webpage.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Dataset | Latest Version Date | Current State |
---|---|---|
Dissolved organic Fe-binding ligand data from the FRidge (GA13) expedition on RRS James Cook (cruise JC156) from December 2017 to February 2018 | 2024-03-21 | Final no updates expected |
Principal Investigator: Randelle M. Bundy
University of Washington (UW)
Co-Principal Investigator: Colleen L. Hoffman
University of Washington (UW)
Contact: Randelle M. Bundy
University of Washington (UW)
DMP_Bundy_Hoffman_OCE-2122928.pdf (66.17 KB)
01/05/2024