NSF Abstact:
Marine oxygen is strongly linked to the cycling of organic matter in the marine environment, and as such, its budget is central to addressing many of the outstanding questions in oceanography. In this study, researchers will measure the amounts of three isotopes of oxygen that can combine to make up the molecular oxygen gas dissolved in oceanic waters. When oxygen reacts with other substances, the three isotopes can behave in slightly different ways depending on the type of reactions; this makes it possible to identify the kinds of processes that have led to the existence of the oxygen found at different places in the ocean. These results are expected to yield new insights into how oxygen interacts with organisms, organic matter, minerals, and other substances under a variety marine environmental conditions, with important implications for future studies of ocean productivity and hypoxic (low oxygen) zones in the ocean. A female graduate student will gain hands-on experience with these new methods, and results from the research will be disseminated to the general public through social media and a video.
In this project, researchers will make simultaneous measurements of five stable isotopic variants of O2, known as quintuple-isotopologue analysis, to provide new constraints on marine oxygen cycling. Using a combined field and experimental study they will evaluate the potential for the quintuple-isotopologue method to trace marine O2 cycling. Utilizing these novel analytical methods, they will analyze depth profiles and dark bottle incubations of O2 isotopologues in the water column at San Pedro Ocean Time Series (SPOT). These measurements, combined with nutrient profiles and complementary laboratory experiments, will yield a first-order understanding of how photosynthesis, respiration, and mixing affect the isotopologue composition of dissolved marine O2.
Dataset | Latest Version Date | Current State |
---|---|---|
Depth profiles of dissolved O2 saturation and isotopologues from the R/V Yellowfin and R/V Kilo Moana from 2016-09-14 to 2017-08-28 | 2018-11-30 | Final no updates expected |
Principal Investigator: William M. Berelson
University of Southern California (USC-WIES)
Principal Investigator: Laurence Yeung
Rice University
Co-Principal Investigator: Edward Young
University of California-Los Angeles (UCLA)
Contact: Laurence Yeung
Rice University
DMP_Yeung_Berelson_Young_OCE1436590_1533501_1436326.pdf (8.29 KB)
11/28/2018