Project description from NSF award abstract:
Gelatinous (soft-bodied) zooplankton can play a crucial role in food webs and in cycling of materials in the world's oceans, and it has been suggested that they may become even more important in the future. However, because they are so difficult to study, gelatinous species remain poorly understood. This is especially true for smaller filter feeding gelatinous animals such as pelagic tunicates (salps, larvaceans, and doliolids). For example, it remains unclear what and how much these abundant filter feeders eat in nature and who eats them. This project will address this large and significant knowledge gap by using a combination of new and traditional methods to investigate the diet of the gelatinous pelagic tunicate Dolioletti gegenbauri, a species common on productive continental shelves such as the South Atlantic Bight. This project will also help train the next generation of ocean scientists to be competent in classical biology, modern molecular biology, and ecosystem modeling. Training will also focus on increasing representation of African Americans in the future science, technology, engineering, and math (STEM) workforce.
This study will provide the first quantitative estimates of the in situ diet of a key continental shelf gelatinous zooplankton species, the doliolid Dolioletta gegenbauri. Large blooms of doliolids have the potential to control the trophic structure of shelf pelagic ecosystems by shunting primary production to the microbial food web and by limiting copepod production via the consumption of their eggs. The long-term objective is to understand the ecological role and significance of doliolids in continental shelf pelagic ecosystems, specifically the underlying processes that lead to their high level of spatial and temporal patchiness. The basic questions to be addressed here include: What do doliolids eat, in situ, at different life stages? Are early life stages of larger metazoans important components of their diets? Do doliolids act as trophic cascade agents promoting primary production and phytoplankton diversity? Because of methodological challenges, there have not yet been definitive studies addressing these fundamental questions. In this project, the investigators will conduct field-based studies that will combine state-of-the art molecular techniques with more traditional methods in zooplankton ecology to answer questions about trophic interactions. Monthly oceanographic expeditions in the South Atlantic Bight will allow the research team to study wild doliolids at different time points in their life cycle and under different plankton bloom conditions. Application of recently developed molecular diagnostic assays will enable the quantitative description of the diversity and quantity of prey consumed, unbiased by experimental manipulation. Additional experimental and theoretical modeling will allow the investigators to link these data with larger ecological significance and scale.
Dataset | Latest Version Date | Current State |
---|---|---|
Zooplankton community abundances from meter net tows on multiple cruises on RV/Savannah in the South Atlantic Bight, Mid-Continental Shelf from 2015-2017 | 2020-04-08 | Final no updates expected |
Doliolid abundance, carbon and nitrogen content, chlorophyll-a, temperature, salinity, and depth from CTD casts from 25 RV Savannah cruises at the South Atlantic Bight, 2015-2017 | 2019-05-29 | Final no updates expected |
CTD downcasts from R/V Savannah SAV-15-10, SAV-15-19, SAV-15-31 in the South Atlantic Bight, Mid-Continental Shelf from May to December 2015 (Doliolid Diet project) | 2017-05-01 | Preliminary and in progress |
Principal Investigator: Marc E. Frischer
Skidaway Institute of Oceanography (SkIO)
Principal Investigator: Deidre M. Gibson
Hampton University
Contact: Marc E. Frischer
Skidaway Institute of Oceanography (SkIO)