Dataset: Growth rates under low and high temperatures for Emiliania huxleyi in constant and fluctuating thermal environments

Final no updates expectedDOI: 10.26008/1912/bco-dmo.782888.1Version 1 (2019-11-26)Dataset Type:experimental

Principal Investigator: David A. Hutchins (University of Southern California)

BCO-DMO Data Manager: Nancy Copley (Woods Hole Oceanographic Institution)


Project: How does intensity and frequency of environmental variability affect phytoplankton growth? (Enviro variability and phytoplankton growth)


Abstract

This dataset includes the growth rates under low and high temperatures for E. huxleyi in constant and fluctuating thermal environments. Global warming will be combined with predicted increases in thermal variability in the future surface ocean, but how temperature dynamics will affect phytoplankton biology and biogeochemistry is largely unknown. Here, we examine the responses of the globally important marine coccolithophore Emiliania huxleyi to thermal variations at two frequencies (1 d and 2 d)...

Show more

This dataset includes the growth rates under low and high temperatures for E. huxleyi in constant and fluctuating thermal environments. Global warming will be combined with predicted increases in thermal variability in the future surface ocean, but how temperature dynamics will affect phytoplankton biology and biogeochemistry is largely unknown. Here, we examine the responses of the globally important marine coccolithophore Emiliania huxleyi to thermal variations at two frequencies (1 d and 2 d) at low (18.5 °C) and high (25.5 °C) mean temperatures. Elevated temperature and thermal variation decreased growth, calcification and physiological rates, both individually and interactively. The 1 d thermal variation frequencies were less inhibitory than 2 d variations under high temperatures, indicating that high-frequency thermal fluctuations may reduce heat-induced mortality and mitigate some impacts of extreme high-temperature events. Cellular elemental composition and calcification was significantly affected by both thermal variation treatments relative to each other and to the constant temperature controls. The negative effects of thermal variation on E. huxleyi growth rate and physiology are especially pronounced at high temperatures. These responses of the key marine calcifier E. huxleyi to warmer, more variable temperature regimes have potentially large implications for ocean productivity and marine biogeochemical cycles under a future changing climate.

These data are published in Wang, X., Fu, F., Qu, P., Kling, J. D., Jiang, H., Gao, Y., & Hutchins, D. A. (2019). How will the key marine calcifier Emiliania huxleyi respond to a warmer and more thermally variable ocean?. Biogeosciences, 16(22), 4393-4409. doi:10.5194/bg-2019-179.


Related Datasets

No Related Datasets

Related Publications

Results

Wang, X., Fu, F., Qu, P., Kling, J. D., Jiang, H., Gao, Y., & Hutchins, D. A. (2019). How will the key marine calcifier Emiliania huxleyi respond to a warmer and more thermally variable ocean?. Biogeosciences, 16(22), 4393-4409. doi:10.5194/bg-2019-179.
Methods

Feng, Y., Warner, M. E., Zhang, Y., Sun, J., Fu, F.-X., Rose, J. M., & Hutchins, D. A. (2008). Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophoreEmiliania huxleyi(Prymnesiophyceae). European Journal of Phycology, 43(1), 87–98. doi:10.1080/09670260701664674
Methods

Fu, F.-X., Warner, M. E., Zhang, Y., Feng, Y., & Hutchins, D. A. (2007). Effects of Increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (cyanobacteria). Journal of Phycology, 43(3), 485–496. doi:10.1111/j.1529-8817.2007.00355.x